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Shivendu Mishra, Anurag Choubey, Harshit Dhankhar, Sri Vaibhav Devarasetty, and Rajiv Misra

Abstract—Navigating electric vehicle (EV) charging can be
challenging due to factors like limited batteries and uncertainties
like traffic, user habits, costs, and charging station availability.
This paper proposes a practical method for improving EV
charging navigation by focusing on driver preferences, such as
minimizing cost or distance travelled. Deep reinforcement learn-
ing (DRL), a widely used method, has successfully managed EV
charging dynamics. We utilized three RL models: DQN, DDQN,
and PPO. Our approach led to reduced overall costs, covering
travel expenses, charging costs, and waiting costs. Moreover, we
optimized the overall distance travelled by considering both the
distance to reach charging stations and the distance travelled
without visiting charging stations. Experiments conducted under
normal and uniform distributions and various EV charging
requests showed that the PPO model surpasses DQN and DDQN
in minimizing cost (travel, waiting, and charging) and distance
travelled, all while considering driver preferences.

Index Terms—Charging navigation, Driver preferences, Deep
reinforcement learning, Intelligent transport systems, Plug-in
electric vehicles (PEVs), Proximal Policy Optimization.

I. INTRODUCTION

LUG-in Electric Vehicles (PEVs) have recently gained

recognition as a promising and environmentally con-
scious mode of transportation, mitigating the environmental
impacts of traditional petroleum-based energy sources [1].
While electric vehicles have a design that eliminates the need
for petroleum and coal while emitting zero greenhouse gases,
the increased use of EVs raises a potential issue. Depending on
user behaviour, the energy demand for charging could become
concentrated within specific time frames, leading to significant
spikes in demand. This event could eventually cause increased
power losses, voltage fluctuations, and pressure on the power
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grid, compromising the effectiveness of power plants and
adversely affecting overall reliability and stability [2].

Establishing charging infrastructure for EVs, called charging
stations, is critical. These stations obtain electricity from
the grid at a low cost to generate revenue by reselling this
electricity to EVs at a higher price point [3]. The optimization
of charging schedules is a critical way to lower the cost
of charging EVs. Many utility companies have made steps
by implementing real-time power rates, which strategically
encourage EV owners to recharge their vehicles during periods
of low demand. The ability of an EV to generate revenue by
feeding extra electricity back into the electrical grid while
operating in vehicle-to-grid (V2G) mode is a fascinating
feature in this arena. However, the environment is challenging
because EV variables such as energy consumption, departure
and arrival times, and electricity costs are dynamic and time-
varying. The interaction of uncertainties caused by traffic
conditions, user behaviour, and the pricing mechanisms of
electricity providers adds to the complication. As a result,
coordinating efficient control over EV charging schedules to
reduce costs becomes an intricate task [4]-[6].

The management system steering EV charging is crucial
to the above intricate task. Various strategies have emerged
from an extensive number of studies aimed at optimizing
EVs’ scheduling and operational paradigms. In most of these
solutions, dynamic electricity pricing takes centre stage, acting
as a means to mitigate peaks in power demand. However, many
of these studies focus on scenarios where EVs remain parked
for extended periods at home or in parking lots, allowing for a
comprehensive measurement of charging times and rates [7]-
[13]. However, the environment of EV usage is not limited to
stationary scenarios. Due to the inherent limitations of EV
battery capacity, charging services are frequently required,
even during short-distance travel. Creating navigation strate-
gies for moving EVs presents a unique set of challenges and
includes factors like the EV’s current location, charging mode
(rapid or gradual), and battery charge level. Additional factors
include user behaviour’s stochastic nature, traffic conditions’
fluidity, charging station wait times, and associated costs. In
light of this complex tapestry, numerous studies [14]-[19]
propose innovative EV navigation and charging systems. Yet,
they often overlook uncertainties like traffic conditions and
charging station wait times, necessitating adaptive approaches.
RL offers a dynamic solution in uncertain environments.

RL effectively addresses complexities in energy manage-
ment and cost reduction domains for electric vehicles, charging
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stations, and intelligent buildings [8], [20]-[29]. However,
charging station selection remains relatively unexplored, with
only a few studies delving into this domain, as seen in studies
like [30] and [31], though scalability remains a concern [31],
[32]. Recent works like [33] address EV driver preference and
scale RL for citywide charging management, while others [27],

[34], [35] also address EV driver preferences.

However, these studies on electric vehicle charging planning
primarily focus on driver preference for reducing charging
time, minimizing travel distance, selecting preferred charging
stations, and identifying optimal charging times. They often
overlook the drivers’ preferences for minimizing distance or
reducing charging costs. Our study addresses this gap by
considering both aspects, demonstrating how incorporating
drivers’ preferences for either cost savings or distance cov-
erage can optimize charging schedules.

The proposed work offers several significant contributions,
including:

i. Introduces a novel optimal EV charging scheduling and
navigation method based on model-free deep reinforce-
ment learning. The suggested strategy prioritizes driver
preferences, such as cost or distance travelled, to provide
a personalized navigation experience.

ii. The proposed approach reduces overall costs, including
driving, charging, waiting, and distance costs, making EV
usage more feasible for drivers/owners.

iii. Three RL models, namely DQN, DDQN, and PPO, were
utilized to optimize the charging navigation process,
providing flexibility and robustness to the proposed ap-
proach.

iv. Experiments conducted under various scenarios, includ-
ing normal and uniform distributions with ‘80’, ‘100’,
‘120’, and ‘140’ EV charging requests, demonstrate the
effectiveness of the suggested approach. The experiments
reveal that the PPO model surpasses DQN and DDQN in
terms of cost and distance travelled while considering
driver preferences.

v. The proposed approach outperforms several benchmark
strategies, including DQN with driver preference, DQN
without driver preference, MDS, MTTS, and MWTS,
with performance improvements of approximately 24.54
%, 62.58 %, 73.84 %, 70.30 %, and 65.14 %, respectively,
in the uniform distribution case. Under normal distribu-
tion, it achieves even greater improvements of 76.28 %,
69.58 %, 78.33 %, 71.10 %, and 75.66 %, respectively.

Table I displays annotations and their meanings. The subse-
quent sections of this paper are structured as follows: Section
II provides an overview of related works. Section III discusses
the proposed DRL-based optimal charging scheduling and
navigation. Section IV presents a case study to illustrate
the efficacy of the proposed approach. Section V presents
thorough discussions of experimental results, highlighting the
efficiency of the suggested approach. Section VI presents the
conclusions.

II. RELATED WORK

In [14], an integrated rapid charging navigation system is
presented, combining a power system control centre, intelli-
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TABLE I: Annotations and their meanings.

Annotations

Meanings

EV, DQN, RL, CSNP

Electric vehicle, Deep Q-network, reinforcement
learning, and charging scheduling & navigation
problem, respectively

DRL, DDQN, PPO

Deep reinforcement learning, Double DQN, and
Proximal Policy Optimization, respectively

t, SP, DL, CDSP

Current time, starting position, destination loca-
tion, and charging-discharging scheduling prob-
lem, respectively

Next state, action, Current state, and reward, re-
spectively

MDS, MTTS, MWTS

Minimum distance, minimum travel time, and
minimum waiting time strategies, respectively

CRY,WT?, AT?, DT?, DD?

EV charging request, expected waiting time, ar-
rival time, driving time, and driving distance,
respectively, at time ¢.

Pref., M, SOC, CSP

Driver preference, the set of all possible actions,
state of charge, and charging scheduling problem,
respectively

MDP, CSNS, RSU, ITS

Markov decision process, charging station navi-
gation system, roadside unit, the intelligent trans-
portation system (network), respectively

CSs, Cen, Carives Cwait

Charging stations, Charging cost, driving cost,

waiting cost, respectively

Py, a
wage per unit of time, respectively

parameter, policy, discount factor, daily driver

T, Caist., TRPO
region policy optimization, respectively

Charging request time, distance cost, and trust

T
Cr®, Diotal, A
consumption per distance unit, respectively

cumulative reward at time t, distance cost, energy

gent transportation system centre, EV terminals, and charging
stations. This collaboration enhances EV technology by seam-
lessly integrating transportation and power domains. Similarly,
[15] introduces an electric vehicle navigation system supported
by a vehicle ad-hoc network and a hierarchical architec-
ture, with a traffic information centre overseeing operations.
Additionally, authors in [16] propose a charging navigation
paradigm integrating real-time crowd sensing and EV route
selection facilitated by a central control centre and charging
stations. In the paper, [17], an integrated EV navigation system
employs a hierarchical game model to optimize transportation
and power infrastructures, with charging station dynamics
modelled as a non-cooperative game. Finally, works in [18]
suggest an loT-based EV rapid charging strategy to mitigate
power grid strain, dynamically setting charging prices based
on power regulation and real-time traffic data.

A hybrid charging management system is a clever idea
suitable for urban EV taxis using the knowledge provided
in the work [19]. A combination of EVs, charging stations,
battery-swapping facilities, and a stern global controller stands
out in this context. The global controller plays a vital role
in this architecture, managing real-time data from charging
and swapping stations. This data-driven analysis is critical
in determining the optimal charging or swapping station and
optimizing the EV taxi fleet’s efficiency. However, because
the earlier methods operate in a deterministic framework,
they ignore essential uncertainties like the constantly changing
nature of traffic conditions and the fluctuating lengths of time
drivers must wait at charging stations. These uncertainties
significantly impact the effectiveness of both route and charg-
ing station selection strategies, necessitating a more adaptive
approach to guarantee optimal performance.

In complex situations, relying solely on existing knowl-
edge of uncertainty is insufficient. There has recently been
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a greater emphasis on proposing learning-centred techniques
for identifying optimal charging stations for electric vehicles in
urban settings. To address this issue, Reinforcement Learning
excels at tackling complex decision-making challenges while
avoiding the need for advanced knowledge in uncertainty. In
this context, MDP provides a versatile structure for depicting
decision-related situations in unpredictable and uncertain envi-
ronments. MDP is the foundation for reinforcement learning,
providing a stable platform for making optimal decisions in the
face of uncertainty. While the reinforcement Learning scenery
has grown, its focus has frequently shown energy management
and cost reduction domains for electric vehicles, charging
stations, and intelligent buildings [8], [20]-[29]. Surprisingly,
charging station selection still needs to be explored, with
only a few studies stepping into this domain. The authors in
the work [30] introduce an innovative approach to alleviate
congestion in the CS allocation that has been presented,
employing Q-learning. The study comprehensively considers
both travel and queuing time within CSs, culminating in
developing a cohesive joint-resource congestion game. This
model effectively captures the dynamic interplay between
EVs and available resources. By harnessing the power of the
Q-learning algorithm, the authors have successfully tackled
the challenge and resolved the problem at hand. Notably, a
ground-breaking project described in [31] proposes a novel
approach to EV charging navigation. This approach uses
reinforcement learning to select charging tactics that reduce
charging costs and time, aligning with optimizing the EV
charging experience. This novel approach effectively addresses
the challenge of route and charging station selection, operating
independently without needing prior knowledge of variables
such as traffic patterns, charging costs, or waiting durations.
Nonetheless, it is worth noting that the proposed strategy
only considers the path from the origin to the chosen charging
station. This narrow focus has a chance to increase network
complexity due to the intricate feature extraction process
necessitated by inter-node movements, which is frequently
accomplished through optimisation methodologies. Further-
more, it is critical to recognise that the efficacy of the above-
suggested approach depends on several variables, including the
number of electric vehicles using the navigation system and the
inherent uncertainty surrounding future EV charging demands.
These dimensions, while critical, have yet to be considered
in the approach, leaving room for further refinements and
enhancements to ensure a practical solution that accounts for
the complexities of real-world EV usage scenarios. The au-
thors introduce a cutting-edge paradigm for route and charging
station selection (RCS) guided by deep reinforcement learning,
known for its model-free nature, in their ground-breaking work
documented in [32]. Considering the inherent unpredictability
of traffic conditions and the constantly shifting environment
of arrival charging requests, this RCS algorithm emerges as
a sign of efficiency, carefully minimizing the collective travel
time, including charging duration, waiting, and driving times.
However, it is essential to note that while both solutions
[31], [32] are remarkable in their efficacy, they have limitations
in terms of scalability. The scope of the assessment was limited
to relatively minor instances, with graphs consisting of only
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39 nodes and a tiny 3-charging station. While these examples
provide valuable insights into the procedure’s capabilities,
their limited scope indicates the potential for further develop-
ment and exploration into more complex scenarios. Zhang et
al. [33] use deep reinforcement learning to manage charging
schedules on a larger scale, as demonstrated by their study
of a large city with over 1,000 charging stations. Notably,
their methodology includes the use of Dijkstra’s algorithm [36]
for route selection as well as a primitive energy consumption
model that is primarily based on travel distance. While this
configuration is suitable for city navigation, the demands of
long-distance navigation necessitate more complex modelling.
Factors such as the unpredictability of future traffic conditions,
the dynamic nature of incoming charge requests, and real-time
electricity pricing considerations must be included for a more
comprehensive approach. These factors contribute to a thor-
ough strategy that optimizes scheduling and increases drivers’
earnings by allowing for more daily trips. By incorporating
these elements into the scheduling framework, the resulting
approach promises to lower charging costs and wait times,
resulting in a holistic solution sensitive to the complexities of
dynamic and evolving transportation scenarios.

None of those above studies consider EV driver/owner pref-
erences. Recent literature, such as [27], [33]-[35], addresses
this aspect. Authors in [33] used RL for charging navigation
and considered driver preferences for reducing total charging
time or minimizing the origin-to-destination distance. In their
study [34], the authors present a comprehensive three-stage bi-
objective model aimed at minimizing installation costs while
maximizing coverage of EV charging stations. They consider
driver risk-taking behaviour and route selection policies to
determine the optimal locations and allocation of charging
stations effectively. The authors in [27] aim to predict the
best EV charging time slots a day in advance, reducing energy
costs and waiting times at CS while ensuring EV batteries’ fast
and complete charging. It also considers EV driver choices for
charging location, connector type, and preferred charging time
of day. In [35], authors explore various EV driver charging
preferences, including as fast as possible, as late as possible,
peak-shaving, shared DCFC station use, and valley-filling.
They assess how these preferences influence charging patterns,
peak power, grid load, and driver flexibility, going beyond
mere cost minimization.

TABLE II: Comparison of RL-based EV Charging Scheduling
and Navigation Methods.

Reference] Year | Problem| Objective Type Methods | Driver

Network Topol- | Station | Waiting
Type Preference ogy Loca- | Ti

EV-Charging
||||| Navigation

tion
DON NO NA NO NO NO
Fitted NO NA NO NO NO

18] 2019 | CDSP
231 2019 | CSP

[B2)] 2019 | CSP
(0] 2019 | CSNP

SARSA | NO NA NO
Xi'an City, China | Yes

(3] 2020 | CSNP XTan City, China | Yes

[Ex]] 2020 | CSNP

27 2023 | CSP.

1291 2024 | CSP.

] 2024 | CDSP

&7 2024 | CSNP i~ [ HEDQN Normal Dis- | Navigate an EV
n

DDPG
@ | DDPG,

251 2020 | CSP.
1261 2023 | CSP

Proposed | - TSNP | M. To
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The summary of the above RL-based methods is discussed
in Table II. it is clear from the table II that the existing
charging navigation methodologies overlook a crucial factor:
the driver’s or owner’s preference when selecting routes and
charging stations, whether prioritizing cost or distance. Mini-
mizing travel distance is a key element in urban mobility, as
it directly impacts travel time, fuel consumption, and overall
efficiency, a common goal among drivers and widely examined
in studies such as [33], [37]. Similarly, cost minimization
is a primary concern for many drivers, affecting the total
expenses associated with travel, including charging, driving,
and waiting costs, as emphasized in works like [8], [23], [27],
[28], [31]. Our model aligns with practical user concerns by
reducing costs, promoting greater EV adoption and supporting
sustainable practices. This perspective is essential in an EV-
centric transportation framework. The impact of long wait
times at charging stations extends beyond the individual driver,
affecting the broader EV transportation system. Consequently,
addressing user preferences for seamless driving experiences
or maximizing drivers’ earnings becomes vital in EV charging
and scheduling. A comprehensive approach that recognizes
and addresses these factors can meet user demands while
enhancing the overall efficiency and sustainability of the EV
transportation ecosystem.

III. DRL-BASED OPTIMAL CHARGING SCHEDULING AND
NAVIGATION

A. Problem definition

The rise of EVs in urban areas has highlighted the im-
portance of managing on-the-go charging effectively. Limited
battery capacity poses a challenge for EVs during journeys,
impacting the driver experience. Intermittent charging in-
creases wait times at CS, affecting user satisfaction and driver
earnings. Driver preferences for cost or distance during EV
navigation influence the path, affecting trip costs and distance.
Balancing driver/owner’s preferences within EV battery con-
straints is challenging. To address this, we propose a DRL-
based solution for optimal EV charging scheduling and naviga-
tion, catering to driver preferences. Our study aims to develop
cost-effective and strategic charging schedules that meet user
demands while maximizing drivers’ earning potential through
cost or distance minimization based on preference.

B. Navigation system model

Our novel and comprehensive navigation system model is
depicted graphically in Figure 1. The charging scheduling
navigation system (CSNS), the central component of our
architecture, manages the ever-changing coordination of real-
time traffic data and charging requests, with a preference for
cost distance. Utilizing a range of communication technolo-
gies, from wired to wireless networks, the CSNS serves as
a central nervous system that coordinates complex commu-
nication among numerous stakeholders, including EVs, CSs,
and ITS. The CSNS manages the identification of optimal
routing solutions and carefully selects appropriate charging
stations to respond to charging requests via its complicated
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Fig. 1: Navigation system model.

web of connectivity. This decision-making is guided by real-
time EVs, CSs, and ITS data, creating a responsive and
intelligent decision-making process.

The integrated system is explained in the following se-
quence to obtain the most effective charging navigation strate-
gies for electric vehicles:

(a) EV needing a charging service seeks assistance from
the CSNS, which provides route guidance and charging
station selection. This request from the EV is seamlessly
transmitted to the CSNS via RSU through advanced
wireless communication technologies.

(b) The CSNS receives a continuous stream of monitoring
data from CSs, including data on the number of charging
and waiting vehicles, among other things. It also collects
real-time traffic insights from intelligent transportation
networks, including road conditions and average veloci-
ties, to provide an up-to-date and comprehensive picture.

(c) The CSNS suggests the route and charging station most
appropriate for the particular EV based on information
collected from both CSs, intelligent transportation net-
works, and the driver’s preferences (Pref.).

(d) After the EV accepts the suggested charging station,
it sends a comprehensive confirmation message to the
CSNS through the RSU, including all reservation de-
tails. Following this, the CSNS effectively catalogues
and secures this valuable reservation data, strategically
streamlining future charging requests.

C. Network model

A directed graph G = (V| E) indicates the network topol-
ogy, where V' = {1,2,3,...,n} denotes a set of vertices and
E={X,;l|i,j=1,2,3,...,n} represents a set of edge. Each
node stands for an intersection or the end of a road, using a
road connecting nodes ¢ and j denoted as X; ; € E. The traffic
network can be represented as a weighted directed graph, with
each link assigned a specific weight. The weight of each link
is defined as follows.

Wi =2 (1)
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here, d;; represents the distance between nodes i to j,
while vzﬁj denotes the velocity from node 7 to j at time ¢.
Additionally, W; ; represents the weight value associated with
the connection between nodes ¢ and j. In other words, the
weight value is the time required to traverse the X; ;. The
Dijkstra algorithm [36] discovers the shortest path by applying
weights to all links. The ITS must update and maintain real-
time traffic data.

D. Optimal charging navigation scheme

Consider an EV leaving its starting point and travelling
through a complex traffic network to its destination. Through-
out the journey, the EV’s onboard system continuously as-
sesses its SOC and determines whether a recharge is required.
When the remaining SoC cannot complete the journey, the
EV’s terminal creates an ingenious charging schedule. This
schedule is carefully planned, considering driver preferences
to minimize cost (travel, waiting, and charging) or distance
travelled.

The navigation path is dynamically updated throughout
the journey based on real-time information the EV terminal
receives. When the EV arrives at the CS, it obtains the
necessary charging energy following the first come, first served
principle. This operational principle prioritizes vehicles that
arrive first, a strategy widely supported in previous studies
addressing CS-selection issues [6], [17], [38]. Considering cost
and distance factors as a preference is central to the proposed
optimal charging navigation strategy. The cost includes the
EV’s waiting, charging, and driving costs at various CSs.

Furthermore, the distance cost encompasses the disparity
between the distance from the origin to the destination when
visiting a charging station and the distance from the origin
to the destination when not visiting a charging station. This
strategic framework yields a comprehensive strategy that bal-
ances the complex dynamics of EV charging, travel efficiency,
cost optimization, and driver preferences. The details are as
follows:

1) Cost (Cepst): Tt includes the following cost categories:

(a) Charging cost (C,p) : We establish the definitions for
energy consumption and charging time as follows:

E!=\xd,VleE, )

here, E! denotes the energy consumption of link I, A
represents the energy consumption rate, and d; stands for
the distance of link /. Now, when the EV arrives at CS
m, the state of charge at arrival (SOCY?,) is computed
as follows:

SOC™: = SOCiy —

E;
ZE’

vieLy max
where 0 < SOCy; < SOCreq, VYV € M.

Here, SOCeyy, SOCheq, Epmaqg, and L correspond to
the current charge status at the point of the request,
the required state of charge, the EV’s maximum battery
capacity, and the set of links from the origin to CS m,
respectively.

3)

(b)

(©)
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Utilizing equations 2 and 3, the calculation of the energy
charging amount at CS m (E7}) can be expressed as
follows:

™ = [(SOCyeq — SOC™

arr

) X Emaz],Ym € M. (4)

Now, the estimation for the charging time at CS m is
outlined as follows:

Em
CT™ = —¢h v ¢ M, (5)
0.y

here, ~ denotes the charging efficiency, and 7 signifies
the charging power of CS. It is important to mention that
we assume that the charging stations charging poles have
uniform power capabilities.

Therefore, the charging cost (C,p,) at CS m is estimated
as follows:

Con =@ x CT™ +p x EL, ©)

here p and & represent current prices and the driver’s
daily wage per unit of time. It is important to note that we
have used the flat price value p=0.8395 [18]. Additionally,
alpha is set at 0.75$/h, based on China’s average hourly
wage in 2017 [31].

Driving cost: Each EV has a different travel time to
the charging station because different EVs have different
distances from the same charging station. This variation
leads to a variety of queuing patterns at the charging
station. The associated travel time T; ; can be represented
by the following equation when we assign an electric
vehicle (E'V;) to a charging station (m € M):

dl,j

v (N
here, d; ; signifies the distance between EV; and CS
m, whereas V; represents the velocity of E'V; or road
avg velocity. Analogous to equation 7, the time taken
to traverse a link [ at time step ¢ is expressed as
Tcllrive = %’t. Consequently, the aggregate driving time
(T77,,e) for route L™ from the origin to the destination
via CS m can be formulated as depicted in equation 8.

T(?;ive = Z Tém‘ve-vm € M. (8)
vieL™

Ti; =

Consequently, the assessment of the driving cost Cgpiye
is undertaken in the subsequent manner:

Odri’ue =& X TgfweVm e M. 9)

Waiting cost: Let us assume that each charging station
has only one charging point. As a result, the waiting
time for EVs is determined by the charging time ahead
of them in the charging queue at that particular station.
Furthermore, we assume that the order in which EVs
arrive at the charging station is determined by their
arrival times. This arrival time corresponds to the driving
duration required for the EVs to travel from their current
location to the selected charging station, i.e., the expected
arrival time of the EV at CS m can be calculated as
follows:

AT™ = TT‘ + Tc?;ivmvm € Ma (10)
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here, T,. represents the time when a charging request is
made, and T, = denotes the duration required to drive
to CS m.

Given this framework, we proceed to estimate the waiting
time (W, 1) for the (n + 1)** EVs, denoted as EV,, 1,
at the charging station (C'S) labelled as m.

Wypi1 =AT, + (CTy + CTo + -+ CTy,) — ATy 41,
forn>1
Wpa1 =0, forn <1,

(1)

here, AT represents the arrival time of the initial EV
in the queue, while CTy + CT5 + ... 4+ CT,, accounts
for the cumulative charging time of EVs already in the
queue. Additionally, AT, signifies the time of arrival
for the current EV (ev,,1) at charging station m. Hence,
in conclusion, the waiting cost (Cyq4i) is computed in
the subsequent manner:

Cwait =ax Wn+17 (12)

here, the symbol & denotes the daily driver wage per
unit of time, which we have set to 0.75$ per hour based
on the average hourly wage in China, as cited in [32].
Additionally, it is important to note that when multiple
charging points are available at a CS, the waiting time
is determined by the minimum of W, ;, where z
represents the number of charging points at each station.
This rule applies when x is less than or equal to n.
However, if x exceeds n, the waiting time is 0.

2) Distance cost (Diotq1): The calculation of the total
distance D;,tq; 1s executed using a shortest path-finding al-
gorithm, like Dijkstra’s algorithm. The formula for Dyyiq; 1S
given by Dy, = shortest origin-destination distance in case
of visiting a charging station — shortest origin-destination
distance without visiting the charging station. Finally, the cost
associated Cy;s¢. is computed as follows:

Cdist. = ¢ X Dtotah

here, ¢ represents the conversion factor that translates distance
into cost.

3) Objective function and constraints: Charging navigation
scheduling aims to reduce the overall synthetic cost. The
objective function is stated as follows:

(13)

OCost = Cdrive + Cwait + CCh- (14)

min[ctota,llej] = Ccost + ¢ X Diotal- (15)

Here, ¢ is the weight coefficient. The constraints on the
objective function are:

ESOC() Z A X Docs + Emin, (16)

ESOCO —AX Docs + Ech > A X Dcsd + Em,ivu (17)
ESOCO + Ech - )\(DOcs + Dcsd) = Ea 0< Ech < E7 (18)

here, I/ denotes the rated battery capacity, while E,,;, repre-
sents the minimum battery capacity. The initial state of charge

6

at the origin is denoted by SOCj, and A signifies the energy
consumption per unit distance. Furthermore, Dpc s represents
the driving distance from the origin to the selected Charging
Station (CS), and D.sq corresponds to the driving distance
from the chosen CS to the destination.

To elaborate further, the constraints can be understood as
follows: Constraint 16 stipulates that the remaining battery
energy of the electric vehicles at the origin must exceed
the energy consumed from the origin to the chosen CS. In
other words, the EV should have ample energy to cover the
initial distance. Moving on to constraint 17, it requires that
the battery energy after charging at the CS must surpass
the energy needed from that CS to the destination. This
ensures that the EV possesses adequate energy to complete
the remaining journey after recharging. Assumptions continue
with the consideration that, upon reaching the destination, the
EV will be charged to its rated capacity E using the prescribed
charging mode. This leads to equation 18, which governs the
requisite battery capacity at the destination. Additionally, the
constraint on F, dictates the amount of energy that can be
charged, aligning with operational limitations. Finally, the task
entails selecting both the optimal driving path and the CS
yielding the lowest total cost, denoted as min [Ctotaﬂ?fj]-

The optimal EV charging navigation approach proposed is
illustrated in Figure 2. It comprises three primary components:
DRL MDP tuples representing state, action, transition, and re-
wards; the system model; and an agent. The agent, trained with
reinforcement learning-based models (such as PPO, DQN,
or DDQN), recommends actions, including charging station
selection. Additionally, based on driver preferences, a path is
determined to achieve the overall objective (O2: minimizing
the total cost) while satisfying constraints C1, C2, and C3. The
following subsections explain MDP tuple formulation and RL
model training in depth.

DRL MDP tuples :

{s, &, T, R}
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EV, :{SN,I,I,..CS
EV, :{SN,I,I,..CS

,..I..EN}
,..I..EN}

Intelligent Transportation Network EVk :{SN,I,I,..CS,..I..EN}

\\\\\

Fig. 2: Proposed EV charging scheduling and navigation
approach.

E. Markov decision process modeling

We proposed a real-time EV charging scheduling and navi-
gation problem from the standpoint of EV drivers and owners.
To model the aforementioned problem, we employ a finite
MDP operating within discrete time steps. The MDP frame-
work offers a mathematical structure for representing decision-
making scenarios where outcomes blend random events and
decisions made by the decision-maker. An MDP is defined
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by a five-tuple (S, A,P,R,~), where: S represents the system
states, A is a finite set of available actions, P denotes the state
transition probabilities, R signifies the immediate rewards of
each state and action, and ~y stands for the discount factor.

The details regarding the formulation of the MDP are
elucidated as follows:

1) State: At time instance t, we perceive the system’s
condition, denoted by st. Which is defined as follows:

st =< CR', AT*, WT",DT"*, DD" >, (19)

CR' =< SP,DL,RT, RTI,SOC ., SOCycq, Pref. >,

20
AT =< ATY, AT?.., AT™ > Ym € M, 221;
WT! =< WTY WT?.,WT™ >N¥me M, (22)
DT! =< DT, DT?..,DT™ >,Ym € M, (23)
DD! =< DD',DD?..,DD™ >.Ym € M,  (24)

where CR!, AT, DT', WT" and DD? are the EV charge
request, expected arrival time, driving time, waiting time,
and driving distance, respectively. The EV charge request
encompasses various details, including the starting position
SP, destination location DL, request time RT, request time
interval RT'I, the current charge level of the battery SOC.,
desired charge level SOC).4, and driver’s inclination denoted
by Pref., where Pref. =1 indicates a preference for distance
optimization, while Pref. = 0 signifies cost preference.

The decision regarding the charging action, specifying the
charging station index where the electric vehicle battery will
be charged, is contingent upon the state s’. Following the
execution of the charging action, the system state transitions
to s'*!, and subsequently, the next charging action a‘*! is
determined for the succeeding time step ¢ + 1.

2) Action: An action is taken for each state denoted as
a'. This action indicates a charging station index selection
(a' € (1,2,...,m)), encompassing the planned route associ-
ated with CS m, facilitating travel from the starting position
SP to the destination DL via CS m. The set of possible
actions constitutes the action space, representing the collection
of indices M = (1,2, ..., m). Consequently, it is a member of
this action space, denoting a specific action undertaken within
the system.

3) Transition probability: The function (s‘*!|st, al) re-
flects the transition probability between the current state s
and the next state s'T!, given that the agent takes action
a'. However, accurately defining this transition probability
becomes challenging without precise environmental models
and a prior understanding of uncertainties. To address this
issue comprehensively, this study adopts a model-free DRL
approach to handle situations with unknown transition proba-
bilities. Our approach aims to learn the transition probability
through iterative learning to maximize cumulative rewards.
This learning process revolves around refining the agent’s
policy over multiple iterations, guided by the outcomes of
trial-and-error interactions with the environment.

IEEE Transactions on Reliability

4) Reward: In our proposed scenario, the reward is calcu-
lated with consideration to the EV driver’s perspective and the
operational time 7, reflecting the driver’s preference denoted
as Pref., i.e.,

(a) When Pref. = 0, indicating a cost preference, the reward
is evaluated subsequently:

—Ceost fort =T

t osty

" —(Ctue —CZP ), fort =T @5)
Cost Cost/* -

(b) When Pref. = 1, indicating a distance preference, the
reward is evaluated subsequently:

_D otal s f t T
Tt - tt:ule exp. o 7& (26)
_( total — Dtotal)' fort =T

In both instances above, the reward function entails negative
values, as the fundamental objective of RL is to optimize
the accumulation of rewards. Hence, the function is assigned
a negative value, which serves to minimize both costs and
distances.

E Training

We initially simplify the problem by employing MDP tech-
niques, as discussed earlier, to tackle EV route charging and
scheduling challenges. Subsequently, we utilize RL algorithms
DQN, DDQN, and PPO to evaluate their efficacy in addressing
our EV route charging scheduling and navigation issues. The
training methodologies for these models are elaborated on in
the subsequent paragraph.

1) Training of DON: Q-learning is a model-free RL ap-
proach to optimizing policy through environmental interaction.
Introduced by Watkins in 1989, it is widely applied, as seen
in Mhaisen et al’s real-time EV charging schedules [39],
[40]. However, Q-learning faces high-dimensional problems,
like EV charging, due to its reliance on lookup tables [41].
Combining RL and deep neural networks, deep reinforcement
learning addresses this issue using DQN. DQN merges deep
neural networks with QQ-learning, making RL applicable in
complex environments [8], [42]. DQN operates effectively
with discrete action spaces. The DQN approach to solving
the proposed problem is discussed in Algorithm 1.

Algorithm 1 Training process of DQN

. Randomly set the initial DQN parameters ©

I Set the initial target network parameters © = © Episode = 1 to Eq, Node = 1 to | V|
. Generate the starting state s BV ¢ EN EV ¢ CS

. Choose a CS and a relevant route L, through action at,

: employing a e-greedy approach

* Proceed along route L -, note reward ¥, obtain fresh information,

. and generate new state s .

: Maintain a tuple (s?11, at, rt, s?) within the replay buffer R M

> Sample batch ¢ = {(st, al, rt, 5t+1)}j¢7¢1 from RM

0: Compute target Q-value for each batch of transition:
1:

—= O NN AW~

t rt if episode terminates at step ¢t + 1
L PR + v - max Q(st+1 ,a’;©) otherwise

12: Determine the loss function 2
13: net) =59, [vt - atstiatsoh)]

. Update parameters ©F «+ @7 — ©%) every P steps
14: Update DQN of « of — vy, L(ef P
15: Reset ® = ©
16: Proceed along route L 4, note reward 'r‘f’. obtain fresh information,

17: and generate new state s
18: Repeat Steps 10 to 16 until EN reached
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2) Training of DDQON: Double Deep Q-Network enhances
the original DQN algorithm. Unlike DQN, DDQN separates
action selection and value estimation by employing two neural
networks: one for selecting actions and another for estimating
their values. This helps prevent overestimation biases and
enhances training stability. The DDQN approach to solving
the proposed problem is discussed in Algorithm 2.

Algorithm 2 Training process of DDQN

. Randomly set the initial DDQN parameters ©

* Set the initial target network parameters © = © Episode = 1 to Eyp, Node = 1 to |V |
* Generate the starting state s EV ¢ EN EV ¢ CS

: Choose a CS and a relevant route L - through action at,

: employing a =-greedy approach

* Proceed along route L -, note reward ¥, obtain fresh information,

. and generate new state s .

* Maintain a tuple (s?11, a?, rt, s?) within the replay buffer R M
: Sample bach ¢ = {(st, at, rt, st+1)}t#j’1 from RM

0: Compute target Q-value for each batch of transition:

t rt if episode terminates at step ¢t + 1
y' = —
v rtpy Q(st+1 , argmax s Q(st+1 ,a’;©);©) otherwise

12: Determine the loss function 2

13: Loty =x¢_, [yt — Q(st; at; @t)}

14: Update DQN parameters ©F «— ©F — AVt L(©1) every P steps
15: Reset ® = ©

16: Proceed along route L -, note reward 1't. obtain fresh information, and generate
17: new state st+1.

18: Repeat Steps 10 to 16 until EN reached

3) Training of PPO: PPO is a policy gradient method in
reinforcement learning designed to combine the data efficiency
and robust performance of TRPO while employing only first-
order optimization techniques. The PPO approach to solving
the proposed problem is discussed in Algorithm 3.

Algorithm 3 Training process of PPO

1: Randomly set initial policy 7 g with parameters ©

2: Set initial target network parameters © = © Episode = 1 to E;y, Node = 1 to | V|
3: Generate the initial state s© EV ¢ EN EV ¢ CS

4: Use the V' function to run g in order to choose a CS

5: and associated route L through al action

6: Proceed along path L ;-, note reward rt, obtain fresh information,

7: and produce new state s .

8: maintain tuple (st, at, rt, st+1) in replay memory R M

9: Sample batch ¢ = {(st, at R rt R stt1 ) }t:(b1 from RM

10: Determine advantage estimates A, =7y + 'de) (s;) — \74) (57)
11: Apply gradient ascent to update the policy: 0 < 6 + avyg policy 0)

. Compute value loss: L(¢) = ﬁ i (\74)(51) —(r; + WV¢(S;)))2
* Revise the old PPO policy ©gjq < © j = 110 N

* Revise actor policy by policy gradient

D p— &V, min fp(’lr(@), Towd (s)) Aty min(p(m(0), 7oiq (), 1)A,}
. Revise critic by:

LV~ V4 ﬁvvé[(\?(st) - Pt)Z] every P steps

18: Reset ©® = ©

19: Proceed along route L -, note reward 'rt’. obtain fresh information,

20: and generate new state s

21: Repeat Steps 10 to 16 until EN reached

e
~NON R W N

IV. CASE STUDY

This section uses an example to illustrate our proposed
EV charging scheduling and navigation approach. We utilize
Figure 3 as a model scenario to demonstrate how our approach
functions. Specifically, we explain through the following three
cases:

Casel- Suppose an EV at point C wants to go to node I,
and all charging stations have the same waiting time: In this
analysis, charging time has been excluded from consideration,
and it is assumed that charging costs are identical at all
charging stations. This case is further divided into two sub-
categories, as outlined below:

8

Fig. 3: Model network for case study.

a) Drivers prioritize cost (Cc,s:) reduction over distance
(Dtotar ): EV has three paths in this case:

ePathl:C 3052621 (Total time 6hrs)
e Path2: 0 5 0S1 5 F 2 I (Total time 4hrs)
ePath3: C L F L G2 0835 I (Total time Shrs)

Hence, based on the criteria above, the CSNS selects
one of the Paths—1, 2, or 3—by evaluating each path’s
total cost, denoted as C'cos:. In this scenario, Path 2 is
determined to be the optimal choice.

b) The driver prioritizes reducing the distance over cost:
If we assume that the velocity of the EV at each link is
the same, then the shortest distance without visiting a
charging station is as follows: C' Lr3g (3 units).
Furthermore, the EV has three possible paths to reach
node I in this scenario:

e Path 1: C % €S2 5 G 2 I (Total 6 unit) Dygy =
6 — 3 = 3 unit.

e Path2: ¢ 5 0S1 L F 2 I (Total 4 unit) Dy =
4 —3 =1 unit.

ePath3: C 5 F 5 G 3 €83 = I (Total 5 unit)
Diota =5 — 3 = 2 unit.

Thus, Path 2 is selected when the driver prefers to reduce

the distance (Dyotal)-

Case2- Suppose an EV at point C wants to go to node
I, and all charging stations have different waiting times:
Assume CS1 has a 3-hour wait time (Path time 7 hours), CS2
has a 30-minute wait time (Path time 6.30 hours), and CS3
has a 30-minute wait time (Path time 5.30 hours). This case
is further divided into two sub-categories, as described below:

a) Drivers prioritize cost reduction over distance: In this
case, EV again has three options:

e Path 1: ¢ 2 €52 22 & 2, T (Total time 6.30hrs)
e Path 2: ¢ 5 0S1 2 F 2 T (Total time 7hrs)
ePath3: C L F L a2 oss 3% g (Total time

5.30hrs)
CSNS chooses Path 3 for the preceding if the EV
can travel with their remaining charge level up to
CS3—otherwise, Path 1 is selected.

b) The driver prioritizes reducing the distance over cost:
For the same EV velocity assumption at each Path and
without visiting a charging station, the shortest distance
is: C Lr2r (3 unit). Hence, based on distance, the
Path options are:

Page 8 of 32
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TABLE III: Analysis of cost parameters in Case3.
Source (C) to Path Cost Total Charge required Waiting time Driving fime Charging Total time r_prefo r_prefy
destination (I) time
C to I Path-1 C L) CS1 L F 3» I (4 hr) 0.64- 0.48 = 0.16 kW 3 4 0.16 hr 7.16 hr -7.16 -1
C to I Path-2 C i} CS2 L} G 1) I (6 hr) 0.96 - 0.48 = 0.48 kW 0.5 6 0.48 hr 6.98 hr -6.98 -3
C to I Path-3 C L} F L» G i» CS3 L} I (5 hr) 0.80-0.48=0.32 kW 0.5 5 0.32 hr 5.82 hr -5.82 -2
C to I Path-4 C L} CS1 i} H i} I (5 hr) 0.80-0.48=0.32 kW 3 5 0.32 hr 8.32 hr -8.32 -2
C to I Path-5 C i) CS2 L} G L} F i> I (7.5 hr) 1.28-0.48=0.80 kW 0.5 7 0.80 hr 8.30 hr -8.30 -4
3 1 2 . . La
e Path 1: C = CS2 — G = I (Total distance 6 unit) / oz =
. . 19 55
(Total time 6.30 hrs) Diy = 3 unit ) 14 &
1 1 2 . . — s
e Path 2: C — CS1 — F = I (Total distance 4 unit) 15 20 36 38
. . >
(Total time 7 hrs) Diy = 1 unit = = ‘
1 1 2 1 .
e Path3: C — F — G = CS3 — I (Total distance 5 9 16 21 27
. . . 2 By
unit) (Total time 5.30 hrs) Diy = 2 unit IOL 17 22) 2 Q  §
1 35
Thus, Path 2 is selected. s - 3 |
Case3- Assume that EV at C desires to reach node I 1 12 L = —¥5

took into account the waiting, driving, and charging times
and assumed that they differ from station to station: In
this analysis, we assume a discharge rate of 0.16 kW/km, a
charging efficiency of 1 kW/h, and a state of charge (SOC) of
0.48 kW. The shortest route from C' to I is C — F — I, with
a total travel time of 3 hours. Additionally, we have calculated
the relevant cost parameters, which are presented in Table III.
Now, let us consider the following scenarios:

a) The driver’s preference is to reduce cost over distance:
In this case, for C' — I, Path-2 is selected, although Path-
3 is inexpensive, an EV with SOC = 0.48 cannot reach
the charging station CS3 because 0.48 kW is required.

b) The driver prefers reducing distance over cost: In this
case, for C — I, Path-1 is selected. As the minimum
value of D, for Path-1 is 1 here.

V. EXPERIMENTAL RESULTS

This section thoroughly examines the simulation environ-
ment, training parameters, convergence analysis, driver pref-
erence analysis, and path navigation analysis and discusses
the proposed work’s results. Specifically, the efficacy of the
proposed work using the PPO model with DQN and DDQN
is evaluated to indicate the usefulness of the suggested navi-
gational approach.

A. Experimental setup

The efficacy of our suggested method is demonstrated
within the real-scale area of Xi’an city, encompassing 39 nodes
and 3 charging stations (4, 22, and 32), indicated as blue stars
in Figure 4. Xi’an’s roads are categorized into three distinct
classes, visually represented by different colours in Figure
4. Green roads denote the ring highway encircling the city,
yellow signifies the urban expressway, and red indicates inner
ring roads [31]. Previous research [31], [32], [43], [44] sug-
gests that road speeds follow truncated normal distributions.
The parameters of these distributions vary proportionally with
speed limits for various road categories, as shown in Table
IV. Xi’an City’s inner ring roads, urban motorways and ring
highways have speed limits of 60 km/h, 80 km/h, and 120
km/h, respectively. EVs have a maximum battery capacity of

Fig. 4: Synthetic road network of Xi’an city China [31].

54.75 kWh [33]. EVs’ initial and required SoC are uniformly
distributed between 0.2 and 0.4. CS provides 60 kW charging
power at an energy consumption rate of 0.16 kW/h. Three
charging stations with two poles are available (see Table IV).

TABLE IV: Proposed work simulation parameters [31], [32].

S.No | Parameter Values
1 Initial SOC Uniform (0.2, 0.4)
2 Energy consumption rate 0.16kW/km
3 Charging power 60kW
4 Max. Battery capacity 54.75kWh
5 Charging efficiency 0.9
6 Required SOC 0.90
7 Number of CS 3
8 Number of nodes 39
9 Number of charging pole 2
10 Number of links 134
11 Green roads velocity (km/h) N (0.9%120, (0.05*120)2)
12 Yellow roads velocity (km/h) N(0.7*80, (0.10¥80)?)
13 Red roads velocity (km/h) N (0.5%60, (0.15*60)?)
14 &, p, 0.758/h,  0.8395%, and
0.5$8/km, respectively

The simulation rigorously evaluates the proposed algo-
rithm’s effectiveness and adaptability across various scenarios,
encompassing diverse numbers of EV charging requests and
their arrival time distributions. These arrival times are stochas-
tically generated using both uniform and normal distributions.
Specifically, uniform and normal distributions generate arrival
times within the [20, 100] range. In the case of the normal dis-
tribution, the mean arrival time is 60, with a standard deviation
of approximately 13.33. Furthermore, the simulation code is
implemented in Python, leveraging the TensorFlow framework
[45] and Stable Baselines3, implementations of reinforcement
learning algorithms in PyTorch [46]. The computational setup
entails an AMD Ryzen 7 5800H CPU operating at 3.20 GHz,
an NVIDIA GeForce RTX 3050 GPU with 4GB of VRAM,
and 16GB of RAM.
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TABLE V: Model training parameters DQN and DDQN.

S.No Parameter Values

1 BATCH_SIZE 128 # minibatch size

2 LR 8e — 3 # learning rate

3 BUFFER_SIZE int(1e5) # replay buffer size

4 TAU 0.4 # for soft update of target
parameters

5 n_episodes 2000

6 GAMMA 0.99 # discount factor

7 eps_end 0.01

8 UPDATE_EVERY 4 # how often to update the
network

9 eps_start 1.0

10 max_grad_norm 10

11 eps_decay 0.7

TABLE VI: Model training parameters PPO.

S.No Parameter Values
1 BATCH_SIZE 64 # minibatch size
2 LR 0.0003 # learning rate
3 BUFFER_SIZE int(1e5) # replay buffer size
4 UPDATE_EVERY 4 # how often to update the

network

5 GAMMA

0.99 # discount factor

6 eps_start 1.0
7 TAU 0.4 # for soft update of target
parameters

8 vf_coef 0.50

9 n_episodes 2000

10 gae_lambda 0.95

11 eps_end 0.01

12 max_grad_norm 0.5

13 clip_range 0.20

B. Convergence analysis

Convergence analysis offers useful insights into the efficacy
and reliability of RL algorithms, facilitating researchers and
practitioners in understanding their behaviour and making in-
formed decisions regarding algorithm selection and parameter
tuning. In our study, we conducted convergence analysis using
three RL models, DQN, DDQN, and PPO, to evaluate the
proposed approach thoroughly. The training parameters uti-
lized for these models are detailed in Tables V and VI. These
parameters play an important role in shaping the learning
dynamics of the models and directly impact their convergence
behaviour. To delve deeper into the effectiveness of each
model, we conducted extensive training sessions comprising
2000 episodes for DQN, DDQN, and PPO. We varied the
number of electric vehicle (EV) charge requests between 80,
100, 120, and 140, utilizing uniform and normal distributions.

The convergence patterns of average cumulative rewards
throughout the training process are graphically depicted in
Figure 5. Figure 5 vividly illustrates the convergence behaviour
of each model. Notably, DQN and DDQN exhibit a slower
convergence rate than PPO, which consistently converges
much faster, typically within 400 to 500 episodes across all EV
cases. This swift convergence of PPO underscores its superior
performance and adaptability relative to the other two models.
Such findings shed light on the efficacy of the PPO model
across diverse scenarios, highlighting its potential as a robust
solution for real-world applications.

Furthermore, Figure 6 provides insight into the average
cumulative travel time progress throughout the training pro-
cess across different EVs and models. It is evident that as
training advances, each model consistently reduces travel time,

(a) With uniform distribu- (b) With normal distribu-
tion tion

Fig. 5: Average cumulative reward progress for different EVs
and models during the training process.

indicating an effective learning of the charging navigation
strategy. Similar to previous observations, PPO demonstrates
accelerated learning, achieving significant reductions in travel
time within just 500 episodes, while DQN and DDQN require
substantially more episodes, around 1500, to attain comparable
performance. This stark contrast underscores the efficiency and
rapid adaptability of the PPO model in optimizing travel time,
further solidifying its prominence among the considered RL
approaches.

(a) With uniform distribu- (b) With normal distribu-
tion tion

Fig. 6: Average cumulative travel time progress for different
EVs and models during the training process.

Moreover, Figure 7 showcases the average cumulative
progress of waiting costs across various EVs and models
during training. As training progresses, all models consis-
tently improve in reducing waiting costs, indicating effective
learning. Notably, PPO demonstrates rapid learning, achieving
significant reductions within 500 episodes, whereas DQN and
DDQN require around 1500 episodes to achieve compara-
ble performance. This underscores the efficiency and rapid
adaptability of the PPO model among the considered RL
approaches.

(a) With uniform distribu- (b) With normal distribu-
tion tion

Fig. 7: Average cumulative waiting cost progress for
different EVs and models during the training process.
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C. Driving preference analysis

The proposed work aims to accommodate driver prefer-
ences, which may prioritize either minimizing the overall cost,
denoted as Cog, or minimizing the distance travelled, denoted
as Dygr1- Ceost €ncompasses various factors such as charging
expenses, waiting times, and travel costs. On the other hand,
Diorar signifies the total distance covered by an electric vehicle
(EV) within a specific scenario. Diy, is computed as the
disparity between the shortest distance between the origin and
destination when the EV includes a stop at a charging station
and the shortest distance when it does not. It quantifies the
additional distance incurred from visiting a charging station
during the journey.

We conducted a driver preference analysis for varying
numbers of EVs using uniform and normal distributions across
three RL algorithms: DQN, DDQN, and PPO. The results are
presented in Tables VII, VIII, IX, and X. Analyzing Tables VII
and VIII, it is clear that when prioritizing cost in Cumulative
Costs (Ccost) across both uniform and normal distribution
scenarios, each model—DQN, DDQN, and PPO strategically
select paths that minimize cost. Consistently lower cost values
evidence this compared to scenarios where distance is pre-
ferred. Take, for instance, the uniform distribution scenario
with 140 EV charge requests: the PPO model achieves a
Ceost of 51.59, whereas it registers 58.51 when distance is
prioritized. This trend persists across all models, highlighting
their adeptness at learning and adapting to preferences. Ad-
ditionally, it is noteworthy that the PPO model consistently
computes lower Cg,s: values than both DQN and DDQN
across both preferences.

TABLE VII: Cumulative costs (Ccos¢) for different numbers
of EVs with different preferences following a uniform distri-
bution.

Number Algorithm Cost Prefer-  Algorithm Distance
of EVs ence Preference
80 DQN 86.67 DQN 4450.83
DDQN 96.72 DDQN 1045.33
PPO 28.83 PPO 30.98
100 DQN 49.27 DQN 552.32
DDQN 209.09 DDQN 214.74
PPO 37.18 PPO 44.04
120 DQN 292.73 DQN 2544.72
DDQN 439.11 DDQN 2478.08
PPO 48.54 PPO 46.63
140 DQN 394.29 DQN 1822.32
DDQN 371.79 DDQN 2507.90
PPO 51.59 PPO 58.51

Turning to Tables IX and X, a similar trend emerges when
prioritizing distance in Dy, under both uniform and normal
distribution scenarios. Each model DQN, DDQN, and PPO
favourably selects paths that minimize Dyytq; over Ceoost.
For instance, prioritizing cost in the scenario of uniform
distribution with 140 EV charge requests, the DQN, DDQN,
and PPO models achieve Dy, values of 154.5, 165.0, and
140.5, respectively. Conversely, when prioritizing distance,
they record 91.5, 76.5, and 138.0 values for the same scenario.
This underscores their proficiency in learning and adapting
to distance preferences. Furthermore, it is noteworthy that
these models exhibit mixed performance regarding D;,tq;- One
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TABLE VIII: Cumulative Costs (Ccys) for different numbers
of EVs with different Preferences following a normal distri-
bution.

Number Algorithm Cost Prefer-  Algorithm Distance
of EVs ence Preference
80 DQN 29.90 DQN 1132.08
DDQN 32.50 DDQN 1433.63
PPO 31.15 PPO 31.03
100 DQN 167.00 DQN 1517.74
DDQN 46.44 DDQN 1019.91
PPO 39.62 PPO 41.32
120 DQN 547.99 DQN 2070.97
DDQN 796.08 DDQN 2002.99
PPO 46.06 PPO 50.36
140 DQN 294.76 DQN 566.11
DDQN 1318.66 DDQN 1378.84
PPO 53.36 PPO 58.07

model may excel at one type of EV request, while another
performs better on different requests across both preferences.

TABLE IX: Cumulative distance cost (Dy,¢q; ) for different
numbers of EVs with different preferences following a uniform
distribution.

Number Algorithm Cost Prefer-  Algorithm Distance

of EVs ence Preference

80 DQN 84.0 DQN 59.5
DDQN 73.0 DDQN 57.0
PPO 84.5 PPO 79.5

100 DQN 99.0 DQN 825
DDQN 116.0 DDQN 65.5
PPO 102.5 PPO 98.0

120 DQN 127.5 DQN 61.0
DDQN 142.5 DDQN 77.0
PPO 142.5 PPO 129.5

140 DQN 154.5 DQN 91.5
DDQN 165.0 DDQN 76.5
PPO 140.5 PPO 138.0

TABLE X: Cumulative distance cost (D;qq; ) for different
numbers of EVs with different preferences following a normal
distribution.

Algorithm Cost Prefer-  Algorithm Distance

Number ence Preference

of EVs

80 DQN 71.5 DQN 33.0
DDQN 87.0 DDQN 31.5
PPO 87.5 PPO 64.5

100 DQN 82.0 DQN 49.0
DDQN 91.0 DDQN 68.5
PPO 1355 PPO 107.5

120 DQN 101.5 DQN 61.0
DDQN 120.5 DDQN 73.5
PPO 134.0 PPO 130.5

140 DQN 146.0 DQN 125.0
DDQN 125.0 DDQN 121.0
PPO 166.0 PPO 149.5

Additionally, to visualize the cost and distance preferences
for each model under both uniform and normal distributions,
we present Figures 8 and 9, illustrating the progress of
cumulative cost (C'cos¢) and cumulative distance cost (Diotai),
respectively. Figure 8 illustrates that each model minimizes
Ccost When the cost is preferred, with PPO consistently pro-
ducing the lowest cost compared to DQN and DDQN across
all scenarios of uniform and normal distributions and varying
numbers of EV charge requests. Moreover, in Figure 9, it is
evident that each algorithm minimizes D;.:,; more effectively
when the preference is distance over cost. DDQN outperforms
other models in uniform distributions in minimizing Dyyta;
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except for scenarios with 120 EVs, where DQN performs best.
Conversely, in normal distribution scenarios, DQN performs
best except for the 140 EV scenario, where DDQN is the
most effective.

. —e— DON - Cost ref.
*~ DDQN - Cost ref.

—e— DON - Cost Pref.
-~ DDQN - Cost Pref.

2000

&

1750

g

2000

Cummulative Cost (C_Cost)

Cummulative Cost (C_Cost)

1000 1<

80 %0 100 110 120 130 140 ) %0 100 120 130 140

(a) With uniform distribu- (b)
tion

tion

With normal distribu-

Fig. 8: Cumulative cost (Ccos) progress.
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—o~ DDQN - Cost Pref.
—e— PPO - Cost Pref.

~e- DON - Distance Pref.
~®- DDQN - Distance Pref.
-e- PO - Distance Pref.

—e— DN - Cost Pref.
—— DDQN - Cost ref.
—e— PPO - Cost Pref.
-e- DON - Distance Pref.

160

~®- DDON - Distance Pref.
-e- PPO - Distance Pref.

Cumulative distance cost (D._total)
Cumulative distance cost (D_total)

80 %0 100 110 120 130 140 80 % 100 110 120 130 140
Number of EVs Number of EVs

(a) With uniform distribu-
tion

(b) With normal distribu-
tion

Fig. 9: Cumulative distance cost (Do) progress.

D. Path navigation analysis

The driver preferences may lean towards minimizing the
total cost (Ceos) oOr the distance traveled (Do), Which is
the focal point of our proposed work. EV route selection is
closely related to these preferences. We employed uniform
and normal distributions in path navigation for our analysis,
utilizing three distinct RL algorithms: DQN, DDQN, and
PPO. The experimental findings of path navigation analysis
are depicted in Figures 10, 11, and 12. Each of these figures
illustrates the route from the source node (SN), where the EV
initiates its journey, to the end node (EN), where it concludes,
with Scg denoting the selected charging station. The path
taken, denoted as ’IN’, includes SN, intermediate nodes, and
EN. Additionally, 'Pref.’ indicates whether the preference is
for minimizing cost (C,og) or distance (Dig))-

On the left-hand side, a map displays the paths taken for
both cost and distance preferences, distinguished by different
colours as indicated in the figures. In Figure 10, we highlight
the paths taken using the PPO model from nodes 31 to 4 and
27 to 6 in uniform distribution, as well as 36 to 19 and 1
to 33 in normal distributions, along with their corresponding
optimal paths. Similarly, Figures 11 and 12 present path
navigation using the DQN and DDQN models, respectively,
in uniform and normal distributions. Notably, each navigation
path includes at least one charging station (C'S). These figures
demonstrate how the models adapt to driver preferences and
adjust their routes accordingly.
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Fig. 10: Path navigation utilizing PPO models.
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Fig. 11: Path navigation utilizing DQN models.

Moreover, in Figure 13, we also present the comparative
path navigation utilizing PPO, DQN, and DDQN models,
which shows that all the used models, PPO, DQN, and DDQN,
learn effectively and choose the path as per the preference of
the driver, i.e., cost or distance. Furthermore, the figure clearly
shows that the PPO model will select a navigation path closer
to optimal than the DQN and DDQN models.
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Fig. 13: Comparative path navigation utilizing PPO, DQN, and
DDQN models.

E. Comparative Analysis of Cumulative Cost

The proposed PPO-based charging navigation algorithm is
evaluated and compared with five benchmark strategies. These
strategies are summarized as follows:

i. DQN with driver preference: This strategy uses a DQN
algorithm that incorporates driver preferences for cost or

distance.

ii. DQN-based without driver preference [31]: In this
strategy, the DQN-based route and charging station se-
lection algorithm optimizes route and charging station
selection to minimize total travel time, addressing traffic
uncertainties and dynamic EV charging requests, without
factoring in user preferences.

iii. Minimum distance strategy (MDS) [18], [31], [47],

[48]: This strategy minimizes the total distance travelled,
ignoring charging and waiting times at the EVCS.

iv. Minimum Travel Time Strategy (MTTS) [31], [49]:
This strategy aims to minimize total travel time, including
driving, waiting, and charging times. The MTTS selects
the EVCS and route, resulting in the shortest total travel
time.

v. Minimum waiting time strategy (MWTS) [31], [49],
[50]: This strategy prioritizes minimizing waiting time
at the EVCS while also selecting a route with minimal
driving time.

Table XI presents the comparative analysis of cumulative costs
for 100 EVs under both uniform and normal distributions. As
Table XI demonstrates, the proposed (PPO + driver preference)
approach consistently achieves a lower cumulative cost than
all five benchmark strategies in both distributions. Further-
more, in the uniform distribution case, the proposed approach
outperforms the DQN with driver preference, DQN-based
without preference, MDS, MTTS, and MWTS strategies with
performance improvements of approximately 24.54 %, 62.58
%, 73.84 %, 70.30 %, and 65.14 %, respectively. In the normal
distribution case, the proposed approach shows improvements
of about 76.28 %, 69.58 %, 78.33 %, 71.10 %, and 75.66
%, respectively. Moreover, Figure 14 effectively illustrates the
performance improvements of the proposed approach in terms
of cumulative cost.

TABLE XI: Comparative Analysis of Cumulative Cost for 100

EVs.
Strategies Uniform Distribution | Normal Distribution
Proposed (PPO + driver preference) 37.18 39.62
DQN with driver preference 49.27 167.00
DQN-based without driver preference 99.36 130.23
MDS 142.14 182.80
MTTS 103.40 137.08
MWTS 125.19 162.76

Cumulative Cost

Luze Uniorm Distnbuion

175 10 Normal Distribution
162,70

14214
127.08
130.23
125.19)

99.36 1034

19.27
7.8 39.67

erenct WO WS S

strategies

Fig. 14: Comparative analysis of cumulative cost with bench-
mark strategies.
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F. Discussion

The machine learning models, particularly reinforcement
learning, offer advantages over traditional mathematical pro-
gramming, including adaptability to dynamic environments
like fluctuating electricity prices and varying charging de-
mands, scalability for handling larger, evolving datasets, the
ability to capture complex non-linear relationships, and real-
time decision-making, which enables responsive EV charging
scheduling and management based on current conditions.
Therefore, this paper introduces a novel method for scheduling
EV charging navigation, considering driver preferences based
on DRL. Our main goal is to create affordable charging sched-
ules that increase drivers’ profitability by considering driver
preferences in terms of cost and distance. To demonstrate the
effectiveness and adaptability of our EV charging navigation
technique, We carried out experiments with varying numbers
of EV charging requests arriving in a single day: “80”, “100”,
“120”, and “140”, utilizing both uniform and normal distribu-
tions. We conducted a comprehensive performance analysis of
our approach utilizing RL models: DQN, DDQN, and PPO.

We selected DQN, DDQN, and PPO for EV charging
scheduling and navigation due to their unique strengths in
reinforcement learning. DQN and DDQN excel in decision-
making within discrete environments, effectively addressing
overestimation issues, while PPO offers a stable and robust
solution for both discrete and continuous control tasks. This
combination enables the suggested approach to explore the ad-
vantages of value-based and policy-based learning strategies,
ensuring optimized performance in EV charging navigation.

In Figure 5, PPO consistently outperforms DQN and DDQN
in average cumulative reward, achieving stability within 400 to
500 episodes compared to DQN and DDQN, which stabilize
after 1500 episodes. All models exhibit an apparent conver-
gence trend, with cumulative rewards gradually increasing over
time under uniform and normal distributions. However, DQN
and DDQN display fluctuations and instability in their learning
curves. Furthermore, our approach selects the EV charging
station for each EV to minimize travel time, as illustrated
in Figure 6. Figure 6 highlights that the PPO algorithm
outperforms DQN and DDQN, sharply reducing cumulative
travel time as training progresses and computing the mini-
mum travel time compared to the others under both uniform
and normal distributions across all numbers of EV charging
requests arriving in a single day. Additionally, as shown in
Figure 13, the comparative path navigation using PPO, DQN,
and DDQN demonstrates that all models effectively learn and
select routes based on the driver’s preferences. However, the
figure highlights that the PPO model consistently selects a
navigation path closer to the optimal solution than DQN and
DDQN.

Moreover, a comparative analysis of cumulative costs with
benchmark strategies shows that the proposed approach out-
performs several benchmark strategies, including DQN with
driver preference, DQN without preference, MDS, MTTS, and
MWTS, with performance improvements of approximately
24.54 %, 62.58 %, 73.84 %, 70.30 %, and 65.14 %, respec-
tively, in uniform distribution. In the normal distribution case,
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it achieves even more significant improvements of 76.28 %,
69.58 %, 78.33 %, 71.10 %, and 75.66 %, respectively.

The findings from the preceding discussion indicate the
success of our suggested EV charging navigation strategy,
particularly in accommodating driver preferences. Further-
more, the PPO algorithm outperforms DQN and DDQN, two
established reinforcement learning algorithms, demonstrating
the efficacy of the suggested approach.

VI. CONCLUSION

This paper addresses the challenges of EV charging navi-
gation by proposing a practical method based on driver pref-
erences, such as cost or distance minimization, using model-
free DRL. The proposed approach, which utilizes three RL
models, DQN, DDQN, and PPO, effectively reduces overall
costs, encompassing travel expenses, charging, and waiting
costs. Furthermore, the method optimizes the overall distance
travelled by considering both the distance to reach charging
stations and the distance travelled without charging stations.
The experimental results, spanning different numbers of EV
charge requests and distribution types, highlight the superiority
of the PPO model over DQN and DDQN in minimizing both
cost and distance travelled while considering driver prefer-
ences. Notably, the PPO model demonstrates fast convergence,
with average cumulative waiting and travel costs decreasing
more rapidly than DQN and DDQN.

Additionally, when evaluating cumulative costs across dif-
ferent numbers of EVs and distribution types, PPO consis-
tently outperforms other models. However, the comparison of
distance costs produces mixed results in identical scenarios.
A comparative analysis of cumulative costs against benchmark
strategies reveals that the proposed approach surpasses several
benchmarks, including DQN with and without driver prefer-
ence, MDS, MTTS, and MWTS. These findings highlight the
importance of personalized navigation systems in fostering
the widespread adoption of EVs and advancing sustainable
transportation solutions.
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