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Abstract

In the current NISQ era, it has become difficult to sched-
ule increasingly complex quantum tasks with limited connec-
tivity of the QPU (Quantum Processing Unit). This is par-
tially attributed to the fact that we require qubits that share
a task to be physically connected in the hardware topology.
To satisfy this connectivity constraint, quantum circuits must
make use of SWAP gates or reversing existing CNOT gates.
Adding these gates comes with added computational cost
and errors which creates a need for efficient routing agents
which can optimize this problem of qubit routing. We present
a Nested Monte Carlo Search (NMCS) based agent (NesQ
router) which aims to solve this problem by efficiently sam-
pling the state space. In our experiments, NesQ was able to
outperform other routing algorithms while offering a much
lower runtime.

1 Introduction

The advent of Noisy Intermediate-Scale Quantum (NISQ)
technology in the recent years has witnessed an array
of quantum computers with unique hardware architectures
(Arute et al. (2019), Karalekas et al. (2020), IBM (2023),
etc). Such quantum devices support instructions which may
be realized as a series of one and two-qubit operations (or
gates), which may be assembled into a quantum circuit. One
such circuit is shown in Fig. 2(a).

To execute these instructions and perform quantum com-
putation, a circuit must be first compiled on the hardware
architecture of the quantum device. Every quantum archi-
tecture has an associated device topology, also known as a
connectivity graph, consisting of physical qubits (nodes) and
connections (edges) between them. To compile the circuit,
a routine must transform it to satisfy the connectivity con-
straints (Pozzi et al. 2022). This is done by strategically plac-
ing SWAP gates such that any gate operation in the modified
circuit only occurs between two physically linked qubits.
This problem of “routing” the circuit to satisfy target device
topology is known as Qubit routing (Cowtan et al. 2019).

The qubit routing problem is specifically of interest due
to the resource-constraint nature of quantum devices, with
low fidelities, limited connectivity and poor quality of qubits
(Pozzi et al. 2022). It is also crucial to optimize the place-
ment of SWAP gates to minimize the resulting circuit’s over-
head depth. This is essential to ensure effective computation

before decoherence of qubits (Sinha, Azad, and Singh 2022).
Lastly, minimizing output circuit depth also helps maximize
Quantum Volume (QV), which quantifies the upper bound
of circuit size that can be reliably executed on a quantum
device (Pozzi et al. 2022).

Therefore, we aim to minimize the output circuit depth
rather than choosing alternative objectives such as minimiz-
ing added gate count. We found this metric to be more sig-
nificant as one may be readily convinced that long-running
sparse circuits possessing a low total gate count may not be
favorable. Further, minimizing gate count is a much easier
problem which may be formulated in a simple action space,
rather than a combinatorial one which we consider (Pozzi
et al. 2022).

A few off-the-shelf transpilers to route quantum circuits
exist, such as Cirq by Google (Developers 2024), Qiskit
(basic, SABRE, stochastic) by IBM (Aleksandrowicz et al.
2019), t| ket developed at Cambridge Quantum Computing
(CQC) (Sivarajah et al. 2020). t| ket also employs BRIDGE
gates which has shown to improve performance by (Itoko
et al. 2020). In the past, IBM organized a competition to
find the best routing algorithm, won by Zulehner for his so-
lution based on A* search (Zulehner, Paler, and Wille 2019).
Following this, people have approached the qubit routing
problem in various ways. Some authors like Paler, Zulehner,
and Wille (2021) showed equivalence to traveling salesman
problem on a torus, others such as Cowtan et al. (2019) de-
veloped architecture-agnostic methods using graphs. Pozzi
et al. (2022) approached the problem using Double DQNs
with simulated annealing. Sinha, Azad, and Singh (2022)
employed Monte Carlo Tree Search (MCTS) aided by Graph
Neural Networks (GNN) and presented Qroute. More re-
cently, Tang et al. (2024) presented AlphaRouter, a solu-
tion which integrates MCTS with Reinforcement Learning
(RL). Many heuristic-based approaches have also been im-
plemented by Wagner et al. (2023), Chand et al. (2019),
Cheng et al. (2024).

Nested Monte Carlo Search (NMCS) (Cazenave 2009) is
a search algorithm that performs playouts at different recur-
sive levels. A playout of level one chooses its move to play
until a terminal state by playing a standard playout for each
possible move at each step (see Figure 1). A playout of level
two does the same except that it plays playouts of level one
for each possible move at each step of the level two playout.
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Figure 1: A playout of level one. In the left tree the best
playout scores 20 and is associated to the third move. So the
third move is played at level 1, leading to the middle tree.
Playouts are played for the three possible moves in the state
of the middle tree and the middle move is associated to the
best playout, leading to the tree on the left. The level one
playout continues like this until a terminal state.

NMCS has been applied with success to various domains,
starting from puzzles such as Morpion Solitaire and Kakuro
to more recently retrosynthesis in Chemistry (Roucairol and
Cazenave 2024) improving the search of AIZynthFinder
(Genheden et al. 2020), Refutation of Spectral Graph Theory
Conjectures (Roucairol and Cazenave 2022) and generation
of molecules (Roucairol et al. 2024).

We employ NMCS for our modified state and combinato-
rial action space in the qubit routing paradigm and name the
framework NesQ. We also implemented optimization passes
to further optimize the routed circuit, naming the resulting
algorithm NesQ+.

We compiled our routing algorithm as an off-the-shelf
Python module named NesQ. We acknowledge the authors
of Qroute (Sinha, Azad, and Singh 2022) for their mod-
ule documentation upon which we built our package. The
framework will be made public on Github as an all-inclusive
Python module upon acceptance at QC+AI workshop of
AAAI 2025.

We will now list the major contributions of our work:

* We present a novel framework employing nested version
of Monte Carlo search to solve the qubit routing problem.

* We added further optimization passes to optimize the
routed circuit and noticed a 13% lower average circuit
depth in our realistic circuit benchmark.

* We ran benchmarks based on various aspects: i) Scala-
bility on random circuits, ii) Realistic circuits, and iii)
Generalizability across device topologies. We found our
algorithm to exhibit an average of 10.55% lower circuit
depth than the existing state-of-the-art framework in each
of the benchmark while exhibiting a 37.17% lower aver-
age runtime.

The remainder of this paper is organized as follows: We be-
gin by presenting a brief summary of preliminary topics in
Section 2. This is followed by a formulation of our algo-
rithm in Section 3. We benchmark our proposed algorithm
in Section 4 and draw a conclusion in Section 5.

2 Preliminaries and related works
2.1 Qubit routing

The problem of qubit routing consists of transforming a
given initial quantum circuit C by inserting SWAP gates such
that the routed circuit C’ satisfies the node connections of de-
vice topology D. Any quantum circuit can be decomposed
into layers such that each layer contains non-overlapping
qubits, i.e., the qubit gates involved in a layer can be ex-
ecuted upon in parallel. The depth of a quantum circuit is
defined as the number of such layers the circuit can be di-
vided into, i.e., the number of distinct time steps required
to schedule all the gates. The goal is then to minimize these
overhead layers (the added depth) after adding the SWAP
gates. For a given routing method R, the process of qubit
routing can be formulated as:

R(C,D) — (' (1)

Let us take a look at the elementary qubit routing example
presented in Fig 2. We are given a quantum circuit (Fig 2(a))
to be compiled on a device with connectivity graph as in Fig
2(b). One may either come up with the idea of swapping q[1]
and q[3] which adds a circuit depth of 2, or swapping q[2]
and q[3] which adds no overhead depth. This example high-
lights the importance of strategically placing SWAP gates to
minimize overhead depth, especially as the number of oper-
ations in the input circuit increase.
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Figure 2: Elementary example to demonstrate qubit routing.
(a) depicts the input circuit, (b) is the connectivity graph of
the device on which the circuit is compiled. (c) and (d) are
two possible routing strategies that satisfy the device topol-
ogy constraints. The parallelizable operations which consti-
tute a layer are highlighted in yellow.



Algorithm 1: The NMCS algorithm.
1: NMCS (state, level)
2:  if level == 0 then
3 return playout (state)
4:  end if
5:  while state is not terminal do
6
7
8

for m in possible moves for state do
s < play (state, m)
s + NMCS (s, level — 1)

9: update best sequence using score (s)
10: end for
11: state < play (state, move of the best sequence)

12:  end while
13: return state

2.2 Nested Monte Carlo Search

Nested Monte Carlo Search (NMCS) is a search algorithm
that combines nested calls with randomness in playouts and
memorization of the best sequence (Cazenave 2009). When
the search is guided by random playouts instead of a heuris-
tic, it becomes important to memorize the best sequence in
the case when nested search gives worse results than a previ-
ous search or a search at lower levels. This is the key idea be-
hind NMCS. A step at each level plays each possible move
and tries to search for the best sequence (sequence associ-
ated with the best score) using nested search at lower level.
If the best sequence is updated, we play the best move from
updated sequence, else we play the move from the previ-
ously saved best sequence. The procedure is presented in
Algorithm 1.

2.3 MCTS for Quantum Circuit Transformation

Previous works have used either plain MCTS for quantum
circuit transformation (Zhou, Feng, and Li 2020, 2022) or
MCTS guided by Graph Neural Networks (GNN) (Sinha,
Azad, and Singh 2022).

The GNN was used in combination with MCTS in a simi-
lar fashion to AlphaGo (Silver et al. 2016). The GNN policy
was used as a prior in the MCTS bandit to explore more
the moves with a high probability. The GNN evaluation was
used to evaluate the long term reward of the newly created
leaf of each MCTS descent. Our proposed algorithm is dif-
ferent since we use NMCS not MCTS.

3 Framework
3.1 Environment dynamics

The algorithm is fed the input circuit design and an initial
injective mapping, M : £ — P where £ and P represent
the set of logical and physical qubits, respectively. The aim
of the algorithm is to iteratively schedule valid gate opera-
tions onto the target device topology by placing some SWAP
gates at each time step. At each time step, the algorithm tries
to convert current operations (which are the set of first un-
scheduled operations for each qubit involved) to local op-
erations, which are the set of free qubit operations which
satisfy the hardware constraints. The algorithm first sched-
ules all current operations which are inherently local. Then

to evolve My, it leverages NMCS to find an optimal set of
SWAP gates such that no involved qubit is overlapping or
locked from a previous operation and all gates are valid ac-
cording to the device connectivity graph. This process is re-
peated at each time step until the all gates in the input cir-
cuit are compiled. It is important to note that as the number
of possible states while building a tree varies exponentially
with the depth of the tree, we terminate the search at an inter-
mediate state where we choose to commit the set of SWAPs
to the current state. Lastly, we keep track of the set ); by em-
ploying mutex locks to freeze nodes that are currently being
operated upon (Sinha, Azad, and Singh 2022). This helps us
to naturally address the different execution times required by
different types of gates.

We now formulate the notion of state, move and action for
applying the Monte Carlo based method. Here, move refers
to a step in the tree search and action is the step taken in the
environment after building it up move-by-move in a nested
fashion according to Algorithm 1.

State: The state space at each time step t tries to encapsu-
late the device topology D and current compilation progress,
and is defined as:

st = {My,Us, Vi, D} where M, is the current mapping
to the device, U is the set of unscheduled gates and )/, stores
the nodes locked at time step t due to a previous unfinished
operation.

Move: Since the set of SWAP gates to be scheduled at any
time step, i.e., the action has an exponential relation with
number of device edges, the action space is combinatorial
and thus we are forced to build up the SWAP set move-by-
move. Let us first define the set of conditions C required to
perform any valid action or move:

* The involved nodes must not belong to ), i.e., not being
operated upon in the current time step.

* The added operation along with the set of all scheduled
operations at the current time step must form a paralleliz-
able set.

* The added operation must contain local gates (must be
executable on the target device).

We are now in a position to define the two types of moves:

* SWAP(n1,n2): This adds a SWAP gate between nodes
ny and ny such that C is satisfied. This move is appended
to the move-set (action) being built up.

* COMMIT: This is a terminal move which indicates the
completion of the formation of the move-set for current
time step. It also schedules the current action (set of
SWAPs) to the circuit and updates the state. Finally, it
resets the move-set to an empty list for the next time step.

Action: Here, action is defined as the set of SWAP gates
to be scheduled at a time step t, such that all its elements

follow the condition set C. The action space is combinatorial
in nature as there are 2" possible actions for n device edges.

3.2 Method

We use Nested Monte Carlo Search (NMCS) to guide the
search of optimal SWAP sets to execute at any given time
step ¢ (see Algorithm 1). Given a state s;, our algorithm aims



to return a set of device edge indices where SWAP gates are
to be scheduled. For this, we perform a level one NMCS at
s¢. A playout of level one chooses its best move to play by
searching until a terminal state is encountered by playing
a random playout for each possible move and then finally
choosing either the move from the new or previously saved
best sequence. It plays this chosen move and transitions to a
new state. This process is repeated for each new state until
the best move chosen is COMMIT. These best moves are a
series of suggested SWAPs stored in a bestSequence array
which is finally returned to guide the circuit compilation at
time step ¢.

To keep track of possible legal moves while doing play-
outs, we devise an action mask A corresponding to any given
state s, with cardinality of N + 1, where N are the number
of edges in the target device. The elements of A are either
true (if the move satisfies condition set C) or false (if not).
Further, the last element of the mask points to the possibility
of performing a COMMIT action. We name this complete
framework NesQ and exhibit its efficacy in Section 4.

3.3 Optimization passes

The circuit depth of a routed circuit can be further optimized
by performing an additional step of transpiler pass which has
proven to improve the final circuit depth in Qiskit (Alek-
sandrowicz et al. 2019). We extend the NesQ algorithm to
include the following passes:

* OptimizelqGates: Optimize chains of single-qubit ul,
u2, u3 gates by combining them into a single gate.

¢ CommutativeCancellation: Cancel the redundant (self-
adjoint) gates through commutation relations.

With the transpiler pass on, we noticed a 13% lower av-
erage circuit depth in the realistic circuit benchmark dis-
cussed in Section 4.2. This encouraged us to include opti-
mization passes in our algorithm and name the final proce-
dure NesQ+.

4 Experiments and results

In this section, we will delineate the performance of our al-
gorithm on various circuit benchmarks by assessing the out-
put circuit depth, circuit depth ratio (CDR) (see equation 2)
and runtime. We choose these benchmarks to realize three
expected outcomes:

* The router is able to scale well with respect to number of
gates in the circuit

* The router is able to perform well on realistic circuits

* The router is able to generalize well across various hard-
ware topologies

We compare our NMCS based agent to various routing algo-
rithms based on state-of-the-art frameworks: Qiskit (basic,
SABRE, stochastic) by IBM (Aleksandrowicz et al. 2019),
Cirq by Google (Developers 2024), t| ket developed at Cam-
bridge Quantum Computing (CQC) (Sivarajah et al. 2020)
and Qroute (Sinha, Azad, and Singh 2022). We ran Qroute
for a search depth of 250 in sections 4.1, 4.2 and 300 in
sections 4.2, 4.3. The results are compiled on IBM’s QX20
Tokyo device.
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Figure 3: Average output circuit depth (a) and cumulative
runtime (for 10 runs) in seconds (b) plotted with respect to
increasing number of gates in randomly simulated circuits.
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4.1 Scalability on random circuits

To demonstrate the scalability of our router on quantum cir-
cuits, we design circuits on the fly with a same number of
qubits as nodes on the hardware topology. We then insert
two-qubit gates randomly between any two logical qubits to
build the final circuit (Sinha, Azad, and Singh 2022). For our
experiment, we simulate circuits with number of gates vary-
ing from 30 to 180 with a step size of 5, giving us a total
of 30 randomly simulated circuits. We run all algorithms 10
times at each step and plot the average output circuit depth
with respect to number of gates in the input circuit. These
results are presented in Fig 3(a). The average runtimes are
presented in Table 1. Note that we do only compare the run-
time of NesQ and NesQ+ with other MCTS based routers to
have a fair comparison. Circuit depth ratios are presented in
Table 3.

We observed NesQ to have a lower output circuit depth
than other state-of-the-art routing algorithms, to scale well
with number of input gates (lower slope in Fig 3(a)) and
retain an average runtime faster by 35.26x than the Qroute
algorithm presented by (Sinha, Azad, and Singh 2022). This
runtime advantage can be attributed to the sample efficient
way of doing rollouts in a nested fashion by NMCS. On aver-



Gates NesQ Cirq Qroute GNRPA NesQ+
30 1.741882 | 0.095985 | 57.910772 | 80.375707 1.875454
40 2.321188 | 0.137800 | 91.984908 116.2286 2.524887
50 3.224417 | 0.185684 | 114.231547 | 158.796500 | 3.862081
60 4.343773 | 0.329320 | 182.626015 | 233.352610 | 5.248788
70 4.880676 | 0.414190 | 203.357469 | 233.359562 | 5.783488
80 5.690395 | 0.515367 | 248.183977 | 255.631882 | 6.534142
90 8.582040 | 0.704814 | 242.724301 | 312.194811 | 7.850141
100 7.485916 | 0.923527 | 263.054020 | 377.962436 | 8.297419
110 8.045412 | 1.279350 | 399.084266 | 400.819585 | 9.705672
120 9.823262 | 1.537304 | 363.455770 | 450.026435 | 9.970981
130 10.797684 | 2.012254 | 393.310650 | 503.998836 | 11.788189
140 12.106278 | 2.219034 | 443.379280 | 581.633442 | 10.778473
150 | 12.924456 | 3.202757 | 528.393336 | 650.770277 | 13.553065

Table 1: Average Runtimes (of 10 runs) for random circuit benchmark (in seconds)

age, we found the output circuit depth to be lower by 48.75%
than Cirq, 51.60% than Qiskit basic, 14.83% than Qiskit
stochastic, 32.57% than Qiskit sabre, 30.42% than t—Xket,
and 40.02% than Qroute.
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Figure 4: Output circuit depth (a) and runtime (in minutes)
(b) for different routing algorithms on different large cir-
cuits.

4.2 Realistic circuit benchmarks

Apart from simulated circuits, it is important to examine
how well a qubit routing agent can perform on a real-world
circuit. We take the 158 circuit IBM-Q realistic quantum cir-
cuit dataset provided by (Zulehner, Paler, and Wille 2018).

We divide the dataset into two parts: i) Small circuits with
100 or fewer quantum gates and ii) Large realistic circuits
with up to 5960 gates. The circuit depths and ratios along
with runtimes are discussed in the following subsections.

Small circuits We ran NesQ and NesQ+ along with all
state-of-the-art routers on the filtered small circuit dataset
and plotted the cumulative output circuit depths in Fig 5.
While NesQ had a slightly higher cumulative circuit depth
than Qroute (2690 and 2583 respectively), NesQ+ was able
to beat all routers by a minimum of 5.27% with a circuit
depth of 2447. In the cumulative runtime analysis, we found
NesQ+ to have a runtime of 1.864 minutes which was faster
by a factor 64.91x than Qroute which took 121 minutes for
routing the dataset. The runtime results are not presented in
the main paper due the sheer volume of small scale circuits
in the dataset. Lastly, Circuit depth ratios are presented in
Table 3.

uit depth

routed circ

Cummulative

Neso arg Qi basic Qs stochastic Qs sabre PyTiet aroute Neso+

Figure 5: Cumulative output circuit depth for different rout-
ing algorithms for small circuit benchmark (upto one stan-
dard deviation considered in error bars).

Large circuits Lastly, we ran all algorithms on 11 large
realistic circuits in the dataset with gates varying from 154
to 5960. We present the output circuit depths in Fig 4(a).
NesQ+ was able to outperform all other routers with a circuit
depth ratio of 1.1512 next to Qroute with a CDR of 1.307
and Qiskit stochastic with 1.517. All circuit depth ratios are
presented in Table 3. On average, NesQ+ found an 11.54%



Circuit Name | Gates NesQ Cirq Qroute NesQ+
rd84_142 154 0.202823 0.037918 12.207869 0.270372
adr4_197 1498 11.086658 54.814014 99.807621 14.060009
radd_250 1405 9.683338 46.239436 86.420729 13.461079

74 268 1343 7.301565 35.613734 131.339545 9.568750
sym6_145 1701 10.237229 58.775746 1944.404549 | 11.602539
misex1_241 2100 18.023073 142.878779 132.625253 | 23.869278
rd73.252 2319 19.430781 198.861971 175.083901 30.877758
cyclel02_110 | 2648 | 27.617641 321.146342 195.689001 38.172365
square_root_7 | 3089 | 35.293369 | 356.253962 | 214.469363 | 45.133008
sqn_258 4459 | 66.416509 | 1491.360893 | 330.1394166 | 85.826042
rd84_253 5960 | 120.109507 | 3986.860282 | 489.3008025 | 154.411345

Table 2: Runtimes for large realistic circuit benchmark in minutes.

lower depth than Qroute and 24.26% than Qiskit stochastic.
Runtime analysis table is presented in Table 2. Comparing
runtimes, we found NesQ+ to be 11.35x faster than Qroute
on average while Cirq took 66.44 hours for 5960 gates and
24.586 hours for 4459 gates. Also note that Qroute took
1944.404 minutes to route “sym6_145” circuit with 1701
gates. We do not report these values in Fig. 4(b) due to po-
tential scaling issues.

4.3 Generalizability across quantum devices

In this era of increasing quantum processors, each having its
unique network of physical qubits, it becomes pertinent for a
qubit routing agent to be able to generalize across these de-
vices without the need of training models from scratch. For
our experiment, we consider IBM QX20 Tokyo (20 qubits),
IBM-QXS5 (16 qubits) and Rigetti 19Q-Acorn (19 qubits).
For these devices, we test the best-performing algorithms
(NesQ+ and Qroute) across various large circuits and present
the ratio of routed circuit depth by NesQ+ and Qroute. These
results are presented as a heatmap in Fig (6). We observe
that NesQ+ outperforms Qroute on all configurations except
one. The lowest average ratio of CDRs is observed on Rigetti
19Q-Acorn which is impressive as it is an architecture with
sparse connectivity, containing nodes with either a degree of
2 or at most 3 (Pozzi et al. 2022). The runtimes for NesQ+
and Qroute across different chosen devices are presented in
Table 4. On average, NesQ+ is 94.86% faster than Qroute on
IBM-QXS, 83.16% faster on IBM QX20 Tokyo and 94.36%
faster on Rigetti 19Q-Acorn.

5 Conclusion

We presented NesQ+, a Nested Monte Carlo Search algo-
rithm which optimizes Qubit Routing for quantum circuits.
NesQ+ achieves lower circuit depths than all the other rout-
ing algorithms we could test by an average of 10.55%. It is
also faster than other Monte Carlo based methods by an av-
erage of 37.17%. It particularly shines in large circuit bench-
marks which displays its robustness with respect to increas-
ing number of gates and layers.

There are many possible future works. For other combina-
torial problems, using a prior improved nested search algo-
rithms a lot. NesQ+ could benefit from using a heuristic as
a prior for routing. Another possible improvement would be

to try Deep Reinforcement Learning algorithms for learning
either an evaluation function or a policy. The policy could
be used associated to the evaluation function in an MCTS
algorithm, or it could serve as a prior for policy learning.
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Figure 6: Ratio of CDR[NesQ+] to CDR[Qroute] for different large circuits across various hardware topologies.

Benchmark | NesQ Cirq | Q-basic | Q-stochastic | Q-sabre | t—ket | Qroute | NesQ+
Random 1.9641 | 3.8373 | 4.0654 2.3063 29131 2.8384 | 3.3097 | 1.9837
Small 1.2201 | 1.6209 | 1.3587 1.3600 1.2843 1.2109 | 1.1569 | 1.0903
Large 1.2635 | 1.6979 | 1.5592 1.5175 1.5480 | 1.3222 | 1.9866 | 1.1512

Table 3: Circuit depth ratios (CDRs) for all benchmarks presented in results.

Circuit Name | Device | NesQ+ | Qroute
gx5 11.30 133.39
radd_250 qx20 12.05 89.18

acorn 13.30 245.71

gx5 8.61 1238.17

74268 qx20 9.64 119.50
acorn 10.96 | 1652.84
gx5 25.34 | 1396.74

rd73.252 qx20 25.80 165.37
acorn 29.18 | 2009.93

gx5 34.80 356.34

cyclel02_110 | gx20 36.07 188.15
acorn 43.84 460.99
gx5 91.05 1833.69

sqn-258 qx20 87.89 315.64
acorn 113.56 | 1015.75

Table 4: Time taken (in minutes) for NesQ+ and Qroute
to route selected large circuits over across different devices
topologies.
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